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Best local approximation in sign-monotone norm is discussed. It is shown that if
IE C(I), then the (one-sided) best local approximation from an (n + I)-dimensional
ECT-space exists at every point x E I. If the (two-sided) best local approximation
(in the L x or L2-norm) exists and the highest coefficient is positive, then f is
(n - I i-convex. For more general sign-monotone norms, one is required to assume
nth order continuous differentiability of the function in order to obtain this result.
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1. INTRODUCTION

The notion of best local approximation was introduced by Chui, Shisha,
and Smith in [4]. They proved that if {uo, U I ,..., Un _ I} is a T-system on
[a,bJ with W(uo, U1, ... ,U" I; a)=det(ulj)(a))7.j~lo#O, then the net
{Tn _ 1(1; [a, a + £ J)} of best uniform approximations to f EO en- I[a, bJ,
from A" _ I = span {uo, U 1'"'' U n _ I } converges as G~ 0 +. The limit function,
T~_I f is the element of An I that satisfies (T::_J)U)(a)=f(i)(a),
j = 0, I, ..., n - I.

Later, Chui, Smith, and Ward showed the same result for best L z­
approximations [5]. Recently, Wolfe [12J generalized this result to any
Lp-norm, 1:( p:( CD. The convergence of the best approximations on
[a, a + GJ to T~ ... Ii is uniform.

In this note we show that the same result holds for a more general family
of norms, namely, the sign-monotone norms. Also, we characterize the
generalized convexity with respect to {uo, U I ,..., Un I} of a function/; by its
best local approximations.

2. BEST LOCAL ApPROXIMATION OF A CONVEX FUNCTION

We start by recalling some definitions and results that will be used in the
sequel.
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The set of functions {U(), U I , ... , Uk] is called a Tchebycheff system (T­
system) on [a, bJ if

(1 )

whenever a:( to < t I < ... < I k :( b.
The system {ua, U 1"'" ulJ } is called an Extended-Complete T-system

(ECT-system) if (i) Equation ( I ) holds for every k, k = 0, I, 2, ... , fl, and (ii)
equalities may occur among the I,'S. [n this case the appropriate columns
are replaced by successive derivatives (see, e.g., [6, p. 6J). The u,'s are
assumed to be in the continuity class C[a, b]. With no loss of generality
we may assume that

where

U i(l ) = rP i( I; a), i = 0, I, 2,..., fl, (21

{~ ( (' -:, I

rPi(l;X)=ll"o(l) I H'd~I)···1 \1,(~,)d~i···d~I'
".\ "'.\

=0.

x :( I :( b,

a:( I < x,

(3 )

and where H'k E C IJ
k [a, b] and is positive for every k = 0, 1,2,... , II.

A function f E C(a, b) is said to be k-convex (with respect to the T­
system {uo, U 1 , ... , ud) if

(4)

for all a < 10 < II < '" I k + I < b.
The set of all k-convex functions with respect to the system

{ua, U I , ... , ud is a convex cone denoted by C(uo, U I ,···, ud.
A function f is said to be k-convex on a subinterval I of [a, b], if (4)

holds whenever the t,'s are in I. f is said to be k-concave on I if -f is k­
convex.

For i=O, 1,2, ... , fl, let Di=(d/dl)('/Wi(l)) be a first order differential
operator and let D If= f Also we set Di = DiD' \ where D 1= D I' If
f E Cia, b) then it admits the Taylor type formula

IJ

f(t)~ I ((D' 1f)/Wi)(X) rPi(l; x),
i={)

I E [x, b), (5 )

for every x E (a, b). If f has a right-hand side flth derivative at x = a, then
(5) holds with x = a.
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In [8] sign-monotone norms are defined on C[a, 6]. A norm II . II is said
to be sign-monotone iff(x)'g(x)?O and If{x)I?lg(x)1 for all x 1=[a,6]
imply IlfII?llgll. For every subinterval I=[a,p] of [a,6], a sign­
monotone seminorm 11'11, is defined by IIIII,= III !/J,II, where !/JAt)=
((/3 -:x) t +:x6 - [3a)/(h - a).

We denote by Ilk the span of {uo, U, , ... , Uk:' The elements of A k are
called Acpolynomials. A function I is called a nowhere II cpolynomial if
there does not exist an interval [:x, P] c [a, h] on which it agrees with
some UE 11 k,

LetjE C[a, h]. Tk (/; l) denotes a best approximation toffrom A k in
II . II,· (In case there is more than one best approximation. Tk is chosen
arbitrarily to be anyone of them. )

Finally if the net [T,,(j; [x, x + I:])} converges as I: --* 0 + then the limit

T,~f = lim Tn (/; [x, x + 1:])
I: ··-..0·

(6 )

is called the (right-hand side) best local approximation to fat x. We show
that although T,,(j; [x. x + I;]) are not necessarily unique. T,~f is unique.

Since W(uo, U, .... , u,,»O (see [6, Theorem 1.2, p. 379]) we can prove
the following:

THEOREM 1. Let :U,l;I~O he an ECT-svstem on [a, h] having the
represenlalion (2) and (3) and let f he a nowhere polynomial element oj
CII[a.h]nC(u(j, u" ... ,u" d. Then fiJr every xE[a,h], the hest local
approximation to f from A" exists and T,j{t) = 2..:/~() ((D i 'fl/\\,)(x)
0,(t: x) filr t E [x, h]. In particular if T,~f = 2..:/ () a,u i then an> O.

The proof follows along lines similar to those of [4. Theorem 2.1 J

3. CONVERSE THEOREMS

A converse theorem does not hold. For. consider the following

EXAMPLE I. Let

f( I ) = In ,(I - 1), - 1~ I < 0,

= t n
I (t + 1). 0 ~ t < 1.

T,~f( t) is either III - III I or tn + I" I an> O. for every x, however.
I rt C( I. t, ... , t n I) on ( - I, I ).

In order to prove a converse theorem we have to confine oursdves to
two-sided best local approximations.
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DEFINITION. Let f be defined on a subinterval of [a, b] containing x. If
the two limits, limv~x~ Tn(f; [x, y]) and limz~x Tn(f; [z, x]), exist and
are equal to each other, then the common limit is called the best local
approximation of f at x and is denoted by T~f

We divide our work into two parts. First we prove the converse theorem
for the uniform and the L 2 norms and then for general sign-monotone
ones. For the sake of simplicity we introduce the following notation: if u =

L7~oajuj then aj(u) = a j.

LEMMA 1. Let f he a nowhere An I-polynomial, continuous function on
(a, h). Iff ¢ quo, UI ,... , Un I), then there exists a point a < x < b, such that
each of its neighbourhoods contains an interval [a" /3x], containing x, with
an(T/I(f; [a,,/3J))<O.

Proof If f ¢ C(uo, UI"'" U/l 1) then there exists an interval
[a, /3] c (a, b) such that

(7 )

(See [1] for the uniform norm and [2] for the L 2-norm.)
We now show that [a, f3] contains a subinterval [ai, f3'] with f3' - a' ~

(/3 - a )/2 such that

a/l(T/I(f; [:x', 13']))<0. (8 )

Assume to the contrary that no such subinterval exists. In particular, no
such interval is contained in [a, (a + f3 )/2], [(a + f3 )/2, f3], or [(a + f3 )/4,
3((a+f3)/4]. Hence,

(9)

whenever to < t I < ... < t /I are n + I points in any of these intervals. Since f
is a nowhere An I-polynomial, all the determinants (9) are strictly positive
[9], i.e., {uo, u l , ... , un-I,f} is a T-system on each of the three intervals
and by [10] it is a T-system on [a, f3] in contradiction to (7), which com­
pletes the proof of the lemma.

Let 8> 0 be given. There exists a number 0 = 0(8) such that for every y,
YE(X,X+O), IIT~f-T/I(f; [x, yJ)11 <8/2. For every yE[X,X+O), set
Lv={tltE[a,x]n(x-o,x] such that IIT~f-Tn(f; [z,y]))11<8 for
every z, t<z<x}. Obviously Lv is an interval. Now let l(y)=inf Lv.
Clearly l( y) < x for every y E [x, X' + 0). .
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LEMMA 2. For every YE[X, x+c5), limsupv~vo/(y)~/(yo), i.e., I(y) is
upper semicontinuous.

Proof Assume that there exists a sequence {Yi}, Yi E (x, X+ c5), with
limi~ x Yi = Yo such that limi~ w l(yJ = to> I(yo). By the definition of I(y),
IIT~f - T,,(.f; [1(yJ, yJ)11 =e (or else l(yJ=a) and from the continuity of
T" (in the interval) one concludes that II T~f - T,,(.f; [to, Yo] )11 = e (or else
to = a in which case to ~ ICvo)), which contradicts the definition of I(yo).

Similarly we set for Z E (x - c5, x], V= = {t I E [x, b] n [x, x + c5) such that
II Tf~f - T,,(f; [x, y])11 < e for every y, x < y < t} and v(z) = sup Vz . One
can show that liminfz~z()v(z)~v(zo) for every zE(x-c5,x], i.e., v(z) is
lower semicontinuous.

LEMMA 3. Let xE(a, h); if T;~fEC(Uo, U\, ... , U" ,)\A,,_I then there
exists an interval [I, v] c (a, b), containing x, such that for every interval
[ex, [3] with I<ex~x~p<v, T,,(.f; [ex,P])EC(Uo, U1 , ... , u" ,)\A,,_\.

Proof Let l=sup{l(y)IYE[x, x+c5)} and let v=inf{v(z)lzE(x-b,
x]}. By Lemma 2, I < x < v and if [; is sufficiently small [I, v] has the
desired property. (Note that if [; is sufficiently small then II T~f -- T,,(f;
[ex, P]) II < [; implies that T,,(.f; [ex, P]) E C(uo, U, ,... , U,,_, )\A" \.)

THEOREM 2. Let f E C(a, b). If for each x E (a, b), a,,( T~f) > 0 then
fEC(U o, u" ... , u"_,)\A,, \.

Proof First note that f is a nowhere A,,_I-polynomial. If f~ C(uo,
U\, ... , u" \) then by Lemma 1, a,,(T,,(.f; [ex" PJ))<O for arbitrarily small
intervals containing x, which contradicts Lemma 3.

The following example shows that the conditions in Theorem 2 are not
necessary.

EXAMPLE 2. Let

=t"+t"-',

-1 < t<O,

O~t<1.

f is a nowhere A,,_ I-polynomial,j E C(1, t, ... , t" I), but ~f does not exist.
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4. BEST ApPROXIMATION FROM A LOWER DIMENSIONAL T-SPACE

In the previous section we discussed the relations between the best local
approximation from the (n + 1)-dimensional T-space A" and its (n - 1)­
convexity. Since one does not need u" in order to define the above men­
tioned convexity, one may ask whether it is possible to characterize this
convexity by best approximations from A" I' In this section we answer the
question in the affirmative. Moreover, as follows by Theorem 3 below, best
local approximation is a most natural characterization of (n - I)-convexity.

We first show that some (n- 2)-convexity properties are equivalent to
the (n - I )st one.

LEMMA 4. Let (u,};'-li he an ECT-sl'stem on [a, hJ and letlhe defined
on (a, h).f E C( lIo, III , ... , lI" I) ill)<II' every x E (a, h) there exists an element
II \ E .•1" I sllch thatl'- u \ is (n - 2 )-concave on (a, x J and (n - 2 )-convex on
[x, h). (Note that ( -I )-convexity means positivity.)

Proo{ The necessity is clear since D~i If increases [6, p. 386].
Sufficiency. n= 1. We may assume that uo = 1. Let t l <t:>. Set

x = (I I + t:> )/2, (j - iI,)( t l )< 0, and (j II J(I:» > 0, hence f(l d <f( t:».
n = 2. Assume as before that u I = I. f will be convex with respect to

( I, u I} on an interval I iffl U I I is convex with respect to (1, t} on U 1(1).

Thus we may assume that lIdt)=I. Let II <t:><t1· (j-lIr,)(l j »
(j-lIr,)(I:» and (j lIr)(lJ) > (j--ur,)(1:»· If t:>=cxtl+(I-:x)t J. where
o<:x < I, then :xl(ll) + (1 -:x) f(td >l(l:».

n~3. It is known that fEC(U o, UI , ... , u" I) iff DofEC(Dou l ,

Dou:> ..... Dou" I)' The proof proceeds by induction.

THEOREM 3. Let: U i };'-(; he an ECT-system on [a, h J and let fE C(a,
h). Il T,~ J exisls f{lr every x and all I (T,~ J) strictly increases with x
IhenfEC(u o. lIl"'" U II I)'

Proo{ For every x E (a, h), Theorem 2 implies that f - T,~ J is (n - 2)­
concave on (a,xJ and (n-2)-convex on [x,h). Thus, by Lemma 4,
fE C(u lI , U 1, .... U" I)'

5. THE CHARACTERIZATION THEOREM FOR SIGN-MONOTONE NORMS

The characterization of the convexity of I by means of its best
approximations in a general sign-monotone norm requires an additional
assumption on f, namely, IE C"(a, h). Under this assumption Amir and
Ziegler [3J proved that if a,.(TII(II))~O for every le(a,h), where
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Tn(f; 1) is the best Lp-approximation to I on I, then f E C(uo, UI , ... , Un I)'

Kimchi generalized this result to (continuous) sign-monotone norms (see
[7, Theorem 3.2]). Moreover, if T,,f is a best approximation to I from An
in any sign-monotone norm and iff is a nowhere AI/-polynomial then the
number of zeros of f - Tni ~ n + 1, the zeros are counted up to
"multiplicity" 2 (see [7,8]). Thus under the differentiability assumption on
f we can prove the following:

THEOREM 2'. Let IE C(a, h) and let T,~f denote its hest local
approximation at x in a sign-monotone norm. I{ f{H every x E: (a, h),
an( T,~f) >°then f E C(uo, U t , ••• , Un t )\AI/ I'

We also have:

THEOREM 3'. Let IE C(a, h) and let T;~ J he its hest local
approximation at x, in a sign-monotone norm. I{ an I (T,~ III strictlr
increases with x thenfEC(uo, U I , ... , Un Jl\A n I'

The following examples show that the existence of best local
approximation from any T-space to a function I does not imply the dif­
ferentiability of f This implies that Theorems 2 and 3 cannot hold for a
general sign-monotone norm, and the additional assumptions of Theorems
2' and 3' are required.

EXAMPLE 3. LetI(t)=sin(l/t)fortE[-I,O)u(O,I]andI(O)=O.For
every T-space An, ~f = °(in the L, -norm) although I is not even con­
tinuous on [ - I, 1].

EXAMPLE 4. Letf E C[ -1, 1] be defined as follows: for t E Eo = [0, 1J\
U:~o(l-I:)/2\ 1/2k

) (O<I:<~), set f(t)=O. For k=O, 1,2.,... set
f( (1 - 2 II: )/2 k

) = (1 - 2 t I: )/2\ and then define f to be linear on each of
the two closed halves of [( 1- I: )/2\ 1/2 k

], k = 0, 1, 2,....
Finally, let f(t)= -f(-t) for tE [-1,0). Given aT-space /1,1' on

[-1,1], I; can be chosen sufficiently small that the best local L t ­

approximation ~f=O (see [11]). However, liminC~o(f(t)/t)=O and
lim sup r ~ o(f(t)/t) = 1; i.e.,f' (0) does not exist.
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