Best Local Approximation and Generalized Convexity

EITAN LAPIDOT

44A Eder St., 34752 Haifa, Israel Communicated by Oved Shisha Received June 24, 1983; revised July 26, 1984

Best local approximation in sign-monotone norm is discussed. It is shown that if $f \in C^n(I)$, then the (one-sided) best local approximation from an (n + 1)-dimensional ECT-space exists at every point $x \in I$. If the (two-sided) best local approximation (in the L_{∞} or L_2 -norm) exists and the highest coefficient is positive, then f is (n-1)-convex. For more general sign-monotone norms, one is required to assume *n*th order continuous differentiability of the function in order to obtain this result. \mathbb{C} 1985 Academic Press, Inc.

1. INTRODUCTION

The notion of best local approximation was introduced by Chui, Shisha, and Smith in [4]. They proved that if $\{u_0, u_1, ..., u_{n-1}\}$ is a *T*-system on [a, b] with $W(u_0, u_1, ..., u_{n-1}; a) = \det(u_i^{(j)}(a))_{i,j=0}^{n-1} \neq 0$, then the net $\{T_{n-1}(f; [a, a+\varepsilon])\}$ of best uniform approximations to $f \in C^{n-1}[a, b]$, from $A_{n-1} = \operatorname{span}\{u_0, u_1, ..., u_{n-1}\}$ converges as $\varepsilon \to 0^+$. The limit function, T_{n-1}^a *f* is the element of A_{n-1} that satisfies $(T_{n-1}^a f)^{(j)}(a) = f^{(j)}(a)$, j = 0, 1, ..., n-1.

Later, Chui, Smith, and Ward showed the same result for best L_2 -approximations [5]. Recently, Wolfe [12] generalized this result to any L_p -norm, $1 \le p \le \infty$. The convergence of the best approximations on $[a, a + \varepsilon]$ to $T_{n-1}^a f$ is uniform.

In this note we show that the same result holds for a more general family of norms, namely, the sign-monotone norms. Also, we characterize the generalized convexity with respect to $\{u_0, u_1, ..., u_{n-1}\}$ of a function f, by its best local approximations.

2. BEST LOCAL APPROXIMATION OF A CONVEX FUNCTION

We start by recalling some definitions and results that will be used in the sequel.

The set of functions $\{u_0, u_1, ..., u_k\}$ is called a Tchebycheff system (*T*-system) on [a, b] if

$$U\begin{pmatrix} u_0, u_1, ..., u_k \\ t_0, t_1, ..., t_k \end{pmatrix} = \det(u_i(t_j))_{i,j=0}^k > 0$$
⁽¹⁾

whenever $a \leq t_0 < t_1 < \cdots < t_k \leq b$.

The system $\{u_0, u_1, ..., u_n\}$ is called an Extended-Complete *T*-system (ECT-system) if (i) Equation (1) holds for every k, k = 0, 1, 2, ..., n, and (ii) equalities may occur among the t_i 's. In this case the appropriate columns are replaced by successive derivatives (see, e.g., [6, p. 6]). The u_i 's are assumed to be in the continuity class $C^n[a, b]$. With no loss of generality we may assume that

$$u_i(t) = \phi_i(t; a), \qquad i = 0, 1, 2, ..., n,$$
 (2)

where

$$\phi_{i}(t;x) = w_{0}(t) \int_{x}^{t} w_{1}(\xi_{1}) \dots \int_{x}^{\xi_{t-1}} w_{i}(\xi_{t}) d\xi_{1} \dots d\xi_{t}, \qquad x \le t \le b,$$

$$= 0, \qquad \qquad a \le t < x,$$
(3)

and where $w_k \in C^{n-k}[a, b]$ and is positive for every k = 0, 1, 2, ..., n.

A function $f \in C(a, b)$ is said to be k-convex (with respect to the T-system $\{u_0, u_1, ..., u_k\}$) if

$$U\left(\frac{u_0, u_1, \dots, u_k, f}{t_0, t_1, \dots, t_k, t_{k+1}}\right) \ge 0$$
(4)

for all $a < t_0 < t_1 < \cdots t_{k+1} < b$.

The set of all k-convex functions with respect to the system $\{u_0, u_1, ..., u_k\}$ is a convex cone denoted by $C(u_0, u_1, ..., u_k)$.

A function f is said to be k-convex on a subinterval I of [a, b], if (4) holds whenever the t_i 's are in I. f is said to be k-concave on I if -f is k-convex.

For i = 0, 1, 2,..., n, let $D_i = (d/dt)(\cdot/w_i(t))$ be a first order differential operator and let $D_{i-1} f = f$. Also we set $D^i = D_i D^{i-1}$, where $D^{-1} = D_{-1}$. If $f \in C^n(a, b)$ then it admits the Taylor type formula

$$f(t) \sim \sum_{i=0}^{n} \left((D^{i-1}f)/w_i \right)(x) \phi_i(t;x), \qquad t \in [x, b],$$
(5)

for every $x \in (a, b)$. If f has a right-hand side nth derivative at x = a, then (5) holds with x = a.

62

In [8] sign-monotone norms are defined on C[a, b]. A norm $\|\cdot\|$ is said to be sign-monotone if $f(x) \cdot g(x) \ge 0$ and $|f(x)| \ge |g(x)|$ for all $x \in [a, b]$ imply $\|f\| \ge \|g\|$. For every subinterval $I = [\alpha, \beta]$ of [a, b], a signmonotone seminorm $\|\cdot\|_{I}$ is defined by $\|f\|_{I} = \|f \circ \phi_{I}\|$, where $\phi_{I}(t) = ((\beta - \alpha) t + \alpha b - \beta a)/(b - a)$.

We denote by Λ_k the span of $\{u_0, u_1, ..., u_k\}$. The elements of Λ_k are called Λ_k -polynomials. A function f is called a nowhere Λ_k -polynomial if there does not exist an interval $[\alpha, \beta] \subset [a, b]$ on which it agrees with some $u \in \Lambda_k$.

Let $f \in C[a, b]$. $T_k(f; I)$ denotes a best approximation to f from A_k in $\|\cdot\|_I$. (In case there is more than one best approximation, T_k is chosen arbitrarily to be any one of them.)

Finally if the net $\{T_n(f; [x, x+\varepsilon])\}$ converges as $\varepsilon \to 0^+$ then the limit

$$T_n^x f = \lim_{\varepsilon \to 0^+} T_n(f; [x, x + \varepsilon])$$
(6)

is called the (right-hand side) best local approximation to f at x. We show that although $T_n(f; [x, x + \varepsilon])$ are not necessarily unique, $T_n^x f$ is unique.

Since $W(u_0, u_1, ..., u_n) > 0$ (see [6, Theorem 1.2, p. 379]) we can prove the following:

THEOREM 1. Let $\{u_i\}_{i=0}^n$ be an ECT-system on [a, b] having the representation (2) and (3) and let f be a nowhere polynomial element of $C^n[a, b] \cap C(u_0, u_1, ..., u_{n-1})$. Then for every $x \in [a, b]$, the best local approximation to f from A_n exists and $T^x_n f(t) = \sum_{i=0}^n ((D^{i-1}f)/w_i)(x) \phi_i(t; x)$ for $t \in [x, b]$. In particular if $T^x_n f = \sum_{i=0}^n a_i u_i$ then $a_n > 0$.

The proof follows along lines similar to those of [4, Theorem 2.1].

3. Converse Theorems

A converse theorem does not hold. For, consider the following

EXAMPLE 1. Let

$$f(t) = t^{n-1}(t-1), \qquad -1 \le t < 0,$$

= $t^{n-1}(t+1), \qquad 0 \le t < 1.$

 $T_n^x f(t)$ is either $t^n - t^{n-1}$ or $t^n + t^{n-1}$, $a_n > 0$, for every x, however, $f \notin C(1, t, ..., t^{n-1})$ on (-1, 1).

In order to prove a converse theorem we have to confine ourselves to two-sided best local approximations.

DEFINITION. Let f be defined on a subinterval of [a, b] containing x. If the two limits, $\lim_{y\to x^-} T_n(f; [x, y])$ and $\lim_{z\to x^-} T_n(f; [z, x])$, exist and are equal to each other, then the common limit is called the best local approximation of f at x and is denoted by $T_n^x f$.

We divide our work into two parts. First we prove the converse theorem for the uniform and the L_2 norms and then for general sign-monotone ones. For the sake of simplicity we introduce the following notation: if $u = \sum_{i=0}^{n} a_i u_i$ then $a_i(u) = a_i$.

LEMMA 1. Let f be a nowhere Λ_{n-1} -polynomial, continuous function on (a, b). If $f \notin C(u_0, u_1, ..., u_{n-1})$, then there exists a point a < x < b, such that each of its neighbourhoods contains an interval $[\alpha_x, \beta_x]$, containing x, with $a_n(T_n(f; [a_x, \beta_x])) < 0$.

Proof. If $f \notin C(u_0, u_1, ..., u_{n-1})$ then there exists an interval $[\alpha, \beta] \subset (a, b)$ such that

$$a_n(T_n(f; [\alpha, \beta]) < 0.$$
⁽⁷⁾

(See [1] for the uniform norm and [2] for the L_2 -norm.)

We now show that $[\alpha, \beta]$ contains a subinterval $[\alpha', \beta']$ with $\beta' - \alpha' \le (\beta - \alpha)/2$ such that

$$a_n(T_n(f; [\alpha', \beta'])) < 0.$$
(8)

Assume to the contrary that no such subinterval exists. In particular, no such interval is contained in $[\alpha, (\alpha + \beta)/2]$, $[(\alpha + \beta)/2, \beta]$, or $[(\alpha + \beta)/4]$, $3((\alpha + \beta)/4]$. Hence,

$$U\binom{u_0, u_1, \dots, u_{n-1}, f}{t_0, t_1, \dots, t_{n-1}, t_n} \ge 0$$
(9)

whenever $t_0 < t_1 < \cdots < t_n$ are n+1 points in any of these intervals. Since f is a nowhere A_{n-1} -polynomial, all the determinants (9) are strictly positive [9], i.e., $\{u_0, u_1, ..., u_{n-1}, f\}$ is a T-system on each of the three intervals and by [10] it is a T-system on $[\alpha, \beta]$ in contradiction to (7), which completes the proof of the lemma.

Let $\varepsilon > 0$ be given. There exists a number $\delta = \delta(\varepsilon)$ such that for every y, $y \in (x, x + \delta)$, $||T_n^x f - T_n(f; [x, y])|| < \varepsilon/2$. For every $y \in [x, x + \delta)$, set $L_y = \{t \mid t \in [a, x] \cap (x - \delta, x] \text{ such that } ||T_n^x f - T_n(f; [z, y]))|| < \varepsilon$ for every $z, t < z < x\}$. Obviously L_y is an interval. Now let $l(y) = \inf L_y$. Clearly l(y) < x for every $y \in [x, x + \delta)$.

We now show:

LEMMA 2. For every $y \in [x, x + \delta)$, $\limsup_{y \to y_0} l(y) \leq l(y_0)$, *i.e.*, l(y) is upper semicontinuous.

Proof. Assume that there exists a sequence $\{y_i\}$, $y_i \in (x, x + \delta)$, with $\lim_{i \to \infty} y_i = y_0$ such that $\lim_{i \to \infty} l(y_i) = t_0 > l(y_0)$. By the definition of l(y), $||T_n^x f - T_n(f; [l(y_i), y_i])|| = \varepsilon$ (or else $l(y_i) = a$) and from the continuity of T_n (in the interval) one concludes that $||T_n^x f - T_n(f; [t_0, y_0])|| = \varepsilon$ (or else $t_0 = a$ in which case $t_0 \leq l(y_0)$), which contradicts the definition of $l(y_0)$.

Similarly we set for $z \in (x - \delta, x]$, $V_z = \{t | \in [x, b] \cap [x, x + \delta)$ such that $||T_n^x f - T_n(f; [x, y])|| < \varepsilon$ for every $y, x < y < t\}$ and $v(z) = \sup V_z$. One can show that $\liminf_{z \to z_0} v(z) \ge v(z_0)$ for every $z \in (x - \delta, x]$, i.e., v(z) is lower semicontinuous.

LEMMA 3. Let $x \in (a, b)$; if $T_n^x f \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$ then there exists an interval $[l, v] \subset (a, b)$, containing x, such that for every interval $[\alpha, \beta]$ with $l < \alpha \le x \le \beta < v$, $T_n(f; [\alpha, \beta]) \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$.

Proof. Let $l = \sup\{l(y) | y \in [x, x + \delta)\}$ and let $v = \inf\{v(z) | z \in (x - \delta, x]\}$. By Lemma 2, l < x < v and if ε is sufficiently small [l, v] has the desired property. (Note that if ε is sufficiently small then $||T_n^x f - T_n(f; [\alpha, \beta])|| < \varepsilon$ implies that $T_n(f; [\alpha, \beta]) \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$.)

THEOREM 2. Let $f \in C(a, b)$. If for each $x \in (a, b)$, $a_n(T_n^x f) > 0$ then $f \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$.

Proof. First note that f is a nowhere A_{n-1} -polynomial. If $f \notin C(u_0, u_1, ..., u_{n-1})$ then by Lemma 1, $a_n(T_n(f; [\alpha_x, \beta_x])) < 0$ for arbitrarily small intervals containing x, which contradicts Lemma 3.

The following example shows that the conditions in Theorem 2 are not necessary.

EXAMPLE 2. Let

$$f(t) = t^{n}, -1 < t < 0,$$

= $t^{n} + t^{n-1}, 0 \le t < 1.$

f is a nowhere A_{n-1} -polynomial, $f \in C(1, t, ..., t^{n-1})$, but $T_n^0 f$ does not exist.

4. BEST APPROXIMATION FROM A LOWER DIMENSIONAL T-SPACE

In the previous section we discussed the relations between the best local approximation from the (n+1)-dimensional *T*-space Λ_n and its (n-1)-convexity. Since one does not need u_n in order to define the above mentioned convexity, one may ask whether it is possible to characterize this convexity by best approximations from Λ_{n-1} . In this section we answer the question in the affirmative. Moreover, as follows by Theorem 3 below, best local approximation is a most natural characterization of (n-1)-convexity.

We first show that some (n-2)-convexity properties are equivalent to the (n-1)st one.

LEMMA 4. Let $\{u_i\}_{i=0}^{n-1}$ be an ECT-system on [a, b] and let f be defined on (a, b). $f \in C(u_0, u_1, ..., u_{n-1})$ iff for every $x \in (a, b)$ there exists an element $u_x \in A_{n-1}$ such that $f - u_x$ is (n-2)-concave on (a, x] and (n-2)-convex on [x, b). (Note that (-1)-convexity means positivity.)

Proof. The necessity is clear since $D_R^{n-1}f$ increases [6, p. 386].

Sufficiency. n = 1. We may assume that $u_0 = 1$. Let $t_1 < t_2$. Set $x = (t_1 + t_2)/2$, $(f - u_x)(t_1) < 0$, and $(f - u_x)(t_2) > 0$, hence $f(t_1) < f(t_2)$.

n = 2. Assume as before that $u_1 = 1$. f will be convex with respect to $\{1, u_1\}$ on an interval I iff $f = u_1^{-1}$ is convex with respect to $\{1, t\}$ on $u_1(I)$. Thus we may assume that $u_1(t) = t$. Let $t_1 < t_2 < t_3$. $(f - u_{t_2})(t_1) > (f - u_{t_2})(t_2)$ and $(f - u_{t_2})(t_3) > (f - u_{t_2})(t_2)$. If $t_2 = \alpha t_1 + (1 - \alpha) t_3$, where $0 < \alpha < 1$, then $\alpha f(t_1) + (1 - \alpha) f(t_3) > f(t_2)$.

 $n \ge 3$. It is known that $f \in C(u_0, u_1, ..., u_{n-1})$ iff $D_0 f \in C(D_0 u_1, D_0 u_2, ..., D_0 u_{n-1})$. The proof proceeds by induction.

THEOREM 3. Let $\{u_i\}_{i=0}^{n-1}$ be an ECT-system on [a, b] and let $f \in C(a, b)$. If $T_{n-1}^x f$ exists for every x and $a_{n-1}(T_{n-1}^x f)$ strictly increases with x then $f \in C(u_0, u_1, ..., u_{n-1})$.

Proof. For every $x \in (a, b)$, Theorem 2 implies that $f - T_{n-1}^{x} f$ is (n-2)concave on (a, x] and (n-2)-convex on [x, b). Thus, by Lemma 4, $f \in C(u_0, u_1, ..., u_{n-1})$.

5. THE CHARACTERIZATION THEOREM FOR SIGN-MONOTONE NORMS

The characterization of the convexity of f by means of its best approximations in a general sign-monotone norm requires an additional assumption on f, namely, $f \in C^n(a, b)$. Under this assumption Amir and Ziegler [3] proved that if $a_n(T_n(f; I)) \ge 0$ for every $I \subset (a, b)$, where $T_n(f; I)$ is the best L_p -approximation to f on I, then $f \in C(u_0, u_1, ..., u_{n-1})$. Kimchi generalized this result to (continuous) sign-monotone norms (see [7, Theorem 3.2]). Moreover, if $T_n f$ is a best approximation to f from Λ_n in any sign-monotone norm and if f is a nowhere Λ_n -polynomial then the number of zeros of $f - T_n f \ge n+1$, the zeros are counted up to "multiplicity" 2 (see [7, 8]). Thus under the differentiability assumption on f we can prove the following:

THEOREM 2'. Let $f \in C^n(a, b)$ and let $T_n^x f$ denote its best local approximation at x in a sign-monotone norm. If for every $x \in (a, b)$, $a_n(T_n^x f) > 0$ then $f \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$.

We also have:

THEOREM 3'. Let $f \in C^n(a, b)$ and let $T_{n-1}^x f$ be its best local approximation at x, in a sign-monotone norm. If $a_{n-1}(T_{n-1}^x f)$ strictly increases with x then $f \in C(u_0, u_1, ..., u_{n-1}) \setminus A_{n-1}$.

The following examples show that the existence of best local approximation from any T-space to a function f does not imply the differentiability of f. This implies that Theorems 2 and 3 cannot hold for a general sign-monotone norm, and the additional assumptions of Theorems 2' and 3' are required.

EXAMPLE 3. Let $f(t) = \sin(1/t)$ for $t \in [-1, 0) \cup (0, 1]$ and f(0) = 0. For every T-space A_n , $T_n^0 f = 0$ (in the L_{∞} -norm) although f is not even continuous on [-1, 1].

EXAMPLE 4. Let $f \in C[-1, 1]$ be defined as follows: for $t \in E_0 = [0, 1] \setminus \bigcup_{k=0}^{\infty} (1-\varepsilon)/2^k$, $1/2^k$) $(0 < \varepsilon < \frac{1}{2})$, set f(t) = 0. For k = 0, 1, 2,... set $f((1-2^{-1}\varepsilon)/2^k) = (1-2^{-1}\varepsilon)/2^k$, and then define f to be linear on each of the two closed halves of $[(1-\varepsilon)/2^k, 1/2^k]$, k = 0, 1, 2,...

Finally, let f(t) = -f(-t) for $t \in [-1, 0)$. Given a T-space A_n , on [-1, 1], ε can be chosen sufficiently small that the best local L_1 -approximation $T_n^0 f = 0$ (see [11]). However, $\liminf_{t \to 0} (f(t)/t) = 0$ and $\limsup_{t \to 0} (f(t)/t) = 1$; i.e., f'(0) does not exist.

References

- 1. D. AMIR AND Z. ZIEGLER, Functions with strictly decreasing distances from increasing Tchebycheff subspaces, J. Approx. Theory 6 (1972), 332-344.
- D. AMIR AND Z. ZIEGLER, Characterization of generalized convex functions by best L²approximations, J. Approx. Theory 14 (1975), 115–127.

- 3. D. AMIR AND Z. ZIEGLER, Characterization of Generalized Convex Functions by their Best L^p-Approximations, in "Approximation Theory" (G. G. Lorentz, Ed.), Academic Press, New York/London, 1973.
- 4. C. K. CHUI, O. SHISHA, AND P. W. SMITH, Best local approximation, J. Approx. Theory 15 (1975), 371-381.
- 5. C. K. CHUI, P. W. SMITH, AND J. D. WARD, Best L_2 local approximation, J. Approx. Theory **22** (1978), 254–261.
- 6. S. KARLIN AND W. J. STUDDEN, Tchebycheff systems: With applications in analysis and statistics, *in* "Pure and Applied Mathematics," Vol. XV, Wiley, New York, 1966.
- 7. E. KIMCHI, Characterization of generalized convex functions by their best approximation in sign monotone norms, J. Approx. Theory 24 (1978), 350-360.
- E. KIMCHI AND N. RICHTER-DYN, A necessary condition for best approximation in monotone and sign-monotone norms, J. Approx. Theory 25 (1979), 169–175.
- 9. E. LAPIDOT, On complete Tchebycheff-systems, J. Approx. Theory 23 (1978), 324-331.
- E. LAPIDOT, On generalized mid-point convexity, *Rocky Mountain J. Math.* 11 (1981), 571-575.
- 11. J. ROSENBLATT, Determining sets and best L_1 -approximation, J. Approx. Theory 32 (1981), 103-114.
- 12. J. M. WOLFE, Interpolation and best L_p local approximation, J. Approx. Theory **32** (1981), 96–102.