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Best local approximation in sign-monotone norm is discussed. It is shown that if
fe C"(I), then the (one-sided) best local approximation from an (# + 1)-dimensional
ECT-space exists at every point xe . If the (two-sided) best local approximation
(in the L, or Lynorm) exists and the highest coefficient is positive, then f is
(n— 1)-convex. For more general sign-monotone norms, one is required to assume
nth order continuous differentiability of the function in order to obtain this result.
C: 1985 Academic Press, Inc.

1. INTRODUCTION

The notion of best local approximation was introduced by Chui, Shisha,
and Smith in [4]. They proved that if {ug, u,,..,u,_,} is a T-system on
[a, b] with W(uy, uy,..u, ,; a)=det(ul(a));;,#0, then the net
{T,_.(f: [a,a+¢])} of best uniform approximations to fe C" '[a, b],
from A, _, =span{ug, u,,..., u,_; converges as ¢ - 0*. The limit function,
T¢ | [ is the element of A, , that satisfies (79 | f)Y(a)=f"(a),
j=0,1,..,n—1

Later, Chui, Smith, and Ward showed the same result for best L,-
approximations [5]. Recently, Wolfe [12] generalized this result to any
L,norm, 1< p<o. The convergence of the best approximations on
[a,a+e] to T _,fis uniform.

In this note we show that the same result holds for a more general family
of norms, namely, the sign-monotone norms. Also, we characterize the
generalized convexity with respect to {u,, u,,.., u,_} of a function f, by its
best local approximations.

2. BEST LOCAL APPROXIMATION OF A CONVEX FUNCTION

We start by recalling some definitions and results that will be used in the
sequel.
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The set of functions {ug, u,,.... u,} is called a Tchebycheff system (7-
system) on [a, b] if

U(um Upyens Uk):det(ui([/))ﬁ],()>0 (1

Los Ly by

whenever a <, <1, < - <1, <h.

The system {ug, uy,.., u,} is called an Extended-Complete T-system
(ECT-system) if (1) Equation (1) holds for every &, k=0, 1, 2,..., 1, and (ii})
equalities may occur among the ¢s. In this case the appropriate columns
are replaced by successive derivatives (see, e¢.g., [6, p.6]). The u/’s are
assumed to be in the continuity class C"[a, b]. With no loss of generality
we may assume that

ut)y=¢t: a), i=0,1,2,..n

o

where

Pl x) = woll) ' wi()... i wAE,) dE,..dE X<Igh,
v Rt (3)

=0, a<t<u,

and where w, € C" %[, b] and is positive for every k=0, 1,2, n.
A function fe C(a, b) is said to be k-convex (with respect to the 7-
system {ug, ty,.., ;. }) if

U( Ugy Uy uk&f);o (4)

Los By Tis Tiy

forall a<iry<t, <1, <bh

The set of all k-convex functions with respect to the system
{ug, Uy .y uy } is @ convex cone denoted by Clu,, ..., uy).

A function f is said to be k-convex on a subinterval I of [qa, b], if (4)
holds whenever the s are in 1. f'is said to be k-concave on [ if — [ is k-
convex.

For i=0, 1, 2,.., n, let D,=(d/dt)(-/w (1)) be a first order differential
operator and let D | f=f. Also we set D'=D,D' ', where D '=D | If
fe€C"(a, b) then it admits the Taylor type formula

n

SO~ Y (D ywilx) gle; x), 1€ [x,b), (5)

i=0

for every xe(a, b). If f has a right-hand side nth derivative at x =a, then
(5) holds with x =a.
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In [8] sign-monotone norms are defined on C{q, b]. A norm || - | 1s said
to be sign-monotone if f(x)-g(x) >0 and |f{x)| > ]g(x)| for all xe[a, b]
imply || fIl=lgll. For every subinterval [=[a, ] of [a ], a sign-
monotone seminorm || - ||, is defined by || f),=1/<¢,ll, where ¢,(t)=
((B—a) t+ab— Ba)/(h—a).

We denote by A, the span of {u,, u,,... u,}. The elements of A, are
called A,-polynomials. A function f is called a nowhere A,-polynomial if
there does not exist an interval [« fi]<[a, b] on which it agrees with
some ue A,

Let fe Cla, b]. T,(f; I) denotes a best approximation to f from A, in
I -1l,. (In case there is more than one best approximation, T, is chosen
arbitranly to be any one of them.)

Finally if the net {T,(/: [x, x+¢])} converges as ¢ > 0" then the limit

rLf=nhm T.(f [x x+e&]) (6)

[Nt

is called the (right-hand side) best local approximation to f at x. We show
that although T,(f. [x, x+¢]) are not necessarily unique, 77 f is unique.

Since W(uy, u,,..., u,)>0 (see [6, Theorem 1.2, p. 379]) we can prove
the following:

THEOREM 1. Let {u,}’  be an ECT-syvstem on [a,b] having the
representation (2) and (3) and let [ be a nowhere polynomial element of
C'[a, b1 Cluy, tyyenu, (). Then for cvery xela,b], the best local
approximation to [ from A, exists and T f(ty=3"_, (D" 'f1/w)(x)

i=10

¢t x) for te[x, b In particular it T f =", a.u,; then u,>0.

The proof follows along lines similar to those of [4, Theorem 2.1 1.

3. CONVERSE THEOREMS
A converse theorem does not hold. For, consider the following

ExampLE 1. Let

fin=r =1, —1<1<0,

=1 Nr+1). 0<r<1.

T f(t) is either " —¢ ' or "4+
FEC(1 tyy " 'Yon (—1,1).

, a,>0, for every x. however,

In order to prove a converse theorem we have to confine ourselves to
two-sided best local approximations.
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DEFINITION.  Let f be defined on a subinterval of [a, b] containing x. If
the two limits, lim, , .- 7,(f; [x, y]) and lim_ , .- T.(f; [z, x]), exist and
are equal to each other, then the common limit is called the best local
approximation of f at x and is denoted by T3 f.

We divide our work into two parts. First we prove the converse theorem
for the uniform and the L, norms and then for general sign-monotone
ones. For the sake of simplicity we introduce the following notation: if u =
2 _oau; then afu)=a,.

LemMMAa 1. Let f be a nowhere A, _,-polynomial, continuous function on
(a,b). If f¢Clug, u,.., u, ), then there exists a point a < x <b, such that
each of its neighbourhoods contains an interval [o,, ], containing x, with

a,(T(f [a. B.])<0.

Proof. 1f f¢Clug, uy,.. u, ) then there exists an interval
[a, ] < (a, b) such that

a, (T, (f: [« 1) <0. (7)

(See [1] for the uniform norm and [2] for the L,-norm.)
We now show that [a, ] contains a subinterval [, '] with " —a' <
(f —a)/2 such that

a,(T,(f: [, B']))<0. (8)

Assume to the contrary that no such subinterval exists. In particular, no
such interval is contained in [o, (¢ + £)/2], [(a+ 8)/2, B, or [(a+ B)/4,

3((a + B)/4]. Hence,
U(uo,ul,..., unl’.qzo (9)
Loy by by 1y 1,

whenever 1, < ¢, < -~ <, are n+ | points in any of these intervals. Since f
is a nowhere A, _ ;-polynomial, all the determinants (9) are strictly positive
[9], ie., {uqg, Uy, uy_y, [} is a T-system on each of the three intervals
and by [10] it is a T-system on [«, f] in contradiction to (7), which com-
pletes the proof of the lemma.

Let £¢> 0 be given. There exists a number = (¢) such that for every y,
ye(x,x+0), IT5f—T,f: [x, yDl<e2. For every ye[x, x+4), set
L.={tltela,x]n(x—6,x] such that [[TXf~T,(f [z y])l<e for
every z, t<z<x}. Obviously L, is an interval. Now let /(y)=infL,.
Clearly /(y) < x for every ye [x, x +6). A
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We now show:

LEMMA 2. For every ye[x, x+0), limsup,_ , I(y)<I(y,), ie, Ky) is
upper Semicontinuous.

Proof. Assume that there exists a sequence {y,}, y,€(x, x+4), with
lim, , . y;= yosuch that lim, ,  {y,)=1,>{(y,). By the definition of /( y),
T f—T,0f; LIy, yiDIl =e¢ (or else /(y;)=a) and from the continuity of
T, (in the interval) one concludes that [T f — T,(f; [, yvo1)il =¢ (or else
!y =a in which case 1, </(y,)), which contradicts the definition of /( y,).

Slmllarly wesetforze(x—9,x], V.= {t| e[ x, b]n [x, x+ &) such that
1T f—T.(f: [x, ]I <e for every y, x<y<t} and v(z)=sup V.. One
can show that liminf. ,_ov(z)>v(zy) for every ze(x—9, x], ie., v(z) is
lower semicontinuous.

LEmMA 3. Let xe(a, b); if TifeClug, Uy, U,. J\A,_, then there
exists an interval [l v]c (a b), containing x, such that for every interval
[a, Bl with l<a<x<f<v, T (f [, 1) e Cluy, tyey u,  NA, .

Proof. Let [=sup{l(y)|ye[x, x+4)} and let v=inf{v(z)|ze (x— 4,
x]}. By Lemma2, I<x<uv and if ¢ is sufficiently small [/ v] has the
desired property. (Note that if ¢ is sufficiently small then |T%f - T,(f;
[a, )] <& implies that T, (f; [o 1) € Clug, Uy Uy N\A, 1)

THEOREM 2. Let feCla, b). If for each xe(a, b), a,(T"f)>0 then
feClug, typy uy N4, .

Proof. First note that f is a nowhere A,_,-polynomial. If /¢ C(u,
Uiy U, ) then by Lemma 1, a,(T,(f; [o., B.])) <0 for arbitrarily small
intervals containing x, which contradicts Lemma 3.

The following example shows that the conditions in Theorem 2 are not
necessary.

ExaMPLE 2. Let

ft)=1", —1 <1<,

="+ 0<r<l.

fis a nowhere A4, _,-polynomial, /e C(1, ..., "), but T%f does not exist.
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4. BEST APPROXIMATION FROM A LOWER DIMENSIONAL T-SPACE

[n the previous section we discussed the relations between the best local
approximation from the (n+ 1)-dimensional T-space A4, and its (n—1)-
convexity. Since one does not need u, in order to define the above men-
tioned convexity, one may ask whether it is possible to characterize this
convexity by best approximations from A, . In this section we answer the
question in the affirmative. Moreover, as follows by Theorem 3 below, best
local approximation is a most natural characterization of (n — 1)-convexity.

We first show that some (n— 2)-convexity properties are equivalent to
the (n— 1)st one.

Lemma 4. Let {u;}"_ ) be an ECT-system on [a, b] and let f be defined
on{a, b). e Cluy, ty,... u, )iff for cvery xe(a, b) there exists an element
u.ed, | such that f—u is (n—2)-concave on (u, x| and (n — 2)-convex on
Lx. b). (Note that (—1)-convexity means positivity.)

Proof. The necessity is clear since D% 'fincreases [6, p. 386].
Sufficiency. n=1. We may assume that wu,=1Let r, <t,. Set
X={1+ 102, (f—u),) <0, and (f - wu )1} >0, hence f(t,) < f(15).
n=2. Assume as before that u«, = 1. / will be convex with respect to
{1, u,} onan interval [iff / u, ' is convex with respect to {1, 7} on u(I).
Thus we may assume that wu,(r)=¢ Let r,<ty<ty (f—u,)t)>
(f—u )t~) and (f—u )We3)>(f—u W) I o =af, 4+ (1 —a) t;, where
O<a< 1, then af (¢t} + (1 —x) f(13)> f(15).
nz3 It is known that fe Cluy, uy,., u, ) ifl DyfeC(Dyu,,
Dyits...., Dyu,, ). The proof proceeds by induction.

THEOREM 3. Let {u,l* | be an ECT-system on [a, b] and let f'e Cla,
b). If T} f exists for every x and a, (T | f) strictly increases with x
then f'e Cluy. uy,.... u, )

Proof. Forevery x € (a, h), Theorem 2 implies that f — T fis (n—2)-
concave on (¢, x| and (#n—2)-convex on [x,b). Thus, by Lemma 4,
feClug, uyy i, ).

S. THE CHARACTERIZATION THEOREM FOR SIGN-MONOTONE NORMS

The characterization of the convexity of f by means of its best
approximations in a general sign-monotone norm requires an additional
assumption on f, namely, f € C"(a, b). Under this assumption Amir and
Ziegler [3] proved that if o, (7T,(f.1))=0 for every /< (a, b), where
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T.(f; 1) is the best L, -approximation to fon I, then f'e Clug, u,,... u, ).
Kimchi generalized this result to (continuous) sign-monotone norms (see
[7, Theorem 3.2]). Moreover, if T,f is a best approximation to f from A,
in any sign-monotone norm and if / is a nowhere A,-polynomial then the
number of zeros of f—T,f>n+1, the zeros are counted up to
“multiplicity” 2 (see [7, 8]). Thus under the differentiability assumption on
J/ we can prove the following:

THEOREM 2'. Let feC™(a, b) and let T:f denote its best local
approximation at x in a sign-monotone norm. If for every xel(a,b),
a (T f)>0 then fe Clug, uy,..., u, ;)\A

o1

We also have:

THeOREM 3'. Let feC™a, b) and let TX |f be ils best  local
approximation at x, in a sign-monotone norm. If a, (T% | [) strictly
increases with x then fe Clugy, u,,... u, N\A, .

The following examples show that the existence of best local
approximation from any T-space to a function f does not imply the dif-
ferentiability of /. This implies that Theorems 2 and 3 cannot hold for a
general sign-monotone norm, and the additional assumptions of Theorems
2" and 3’ are required.

ExampLE 3. Let f(f)=sin(l/t}forre[—1,0)u (0, 1] and f(0)=0. For
every T-space A,, T2/ =0 (in the L -norm) although f is not even con-
tinuous on [ -1, 1]

ExaMPLE 4. Let fe C[ —1, 1] be defined as follows: for 7€ E,=[0, 1]}
UZ_o(1—e)25 1/2%) (0<e<i), set f(1)=0. For k=0,1,2.. set
F((1—2 ')/2%)=(1—-2 "¢)/2* and then define / to be linear on each of
the two closed halves of [(1 —¢)/2%, 1/2¥], k=0, 1, 2,....

Finally, let f(t)= —f(—1t) for te[—1,0). Given a T-space A,, on
[—1,17, ¢ can be chosen sufficiently small that the best local L,-
approximation 79/ =0 (see [11]). However, liminf, ,(f(¢)/t)=0 and
lim sup, _, o( f{2)/t)=1; ie., f'(0) does not exist.
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